An EFE model on skin-sleeve interactions during arm rotation.
نویسندگان
چکیده
Skin and garment constitute a dynamic contact system for human body comfort and protection. Although dermatological injuries due to fabric actions during human body movement are common, there is still no general guidance or standard for measuring or evaluating skin/garment contact interactions, especially, during intense sports. A three-dimensional explicit finite element (EFE) model combined with Augmented Lagrange algorithm (ALA) is developed to simulate interactions between skin and fabric during rotation of the arm. Normalized effective shear stresses at the interface between skin and the sleeve during the arm rotation are provided to reflect the severity of the interactions. The effects due to changes in fabric properties, fabric-skin gap, and arm rotation rate are also illustrated. It has been demonstrated from our predictions that factors such as elastic modulus, friction coefficients, density of fabric, and the initial gap between skin and fabric influence significantly the shear stress and thus the discomfort and even injury potential to skin during intensive body movement such as sports and military. Thus this study for the first time confirms quantitatively that poorly chosen fabric with inappropriate garment design renders adverse actions on human skin.
منابع مشابه
C-arm rotation as a method for reducing peak skin dose in interventional cardiology
PURPOSE Prolonged interventional cardiology (IC) procedures may result in radiation-induced skin injury, a potentially preventable cause of patient morbidity. Rotating the C-arm during an IC procedure may reduce this risk, although the methods by which the technique can be practically applied remains unexplored. A previous study demonstrated that C-arm rotation often increases peak skin dose (P...
متن کاملA Real-time Motion Tracking Wireless System for Upper Limb Exosuit Based on Inertial Measurement Units and Flex Sensors (TECHNICAL NOTE)
This paper puts forward a real-time angular tracking (motion capture) system for a low cost upper limb exosuit based on sensor fusion; which is integrated by an elastic sleeve-mitten, two inertial measurement units (IMU), two flex sensors and a wireless communication system. The device can accurately detect the angular position of the shoulder (flexion-extension, abduction-adduction and interna...
متن کاملLearning Human Behaviors for Robot-Assisted Dressing
We investigate robotic assistants for dressing that can anticipate the motion of the person who is being helped. To this end, we use reinforcement learning to create models of human behavior during assistance with dressing. To explore this kind of interaction, we assume that the robot presents an open sleeve of a hospital gown to a person, and that the person moves their arm into the sleeve. Th...
متن کاملCan the effect of soft tissue artifact be eliminated in upper-arm internal-external rotation?
The purpose of this study was to quantify the effect of soft tissue artifact during three-dimensional motion capture and assess the effectiveness of an optimization method to reduce this effect. Four subjects were captured performing upper-arm internal-external rotation with retro-reflective marker sets attached to their upper extremities. A mechanical arm, with the same marker set attached, re...
متن کاملInfluence of compression cycle time and number of sleeve chambers on upper extremity lymphedema volume reduction during intermittent pneumatic compression.
The cycle time and number of chambers in the pneumatic sleeve may influence the outcome of lymphedema therapy with intermittent compression devices. The aim of our study was to assess efficacy of several commonly used different IPC protocols on edema volume reduction in women with postmastectomy lymphedema. Fixty-seven (57) women with secondary arm lymphedema (age 39-80) were selected to the st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanical engineering
دوره 128 6 شماره
صفحات -
تاریخ انتشار 2006